翻訳と辞書
Words near each other
・ Friedrich-Wilhelm Neumann
・ Friedrich-Wilhelm Otte
・ Friedrich-Wilhelm Richter
・ Friedrich-Wilhelm Tebbe
・ Friedrich-Wilhelm Thorwest
・ Friedrich-Wilhelm Ulrich
・ Friedrich-Wilhelm von Chappuis
・ Friedrich-Wilhelm von Loeper
・ Friedrich-Wilhelm von Rothkirch und Panthen
・ Friedrich-Wilhelm Wangerin
・ Friedrich-Wilhelm Wichmann
・ Friedrich-Wilhelm-Lübke-Koog
・ Friedrich-Wilhelm-Platz (Berlin U-Bahn)
・ Friedrichroda
・ Friedrichroda Railway
Friedrichs extension
・ Friedrichs' inequality
・ Friedrichsaue
・ Friedrichsbau (Stuttgart)
・ Friedrichsberg (Lower Bavaria)
・ Friedrichsberg station
・ Friedrichsbrunn
・ Friedrichsburg
・ Friedrichsdorf
・ Friedrichsdorf (disambiguation)
・ Friedrichsdorf station
・ Friedrichsfeld (Niederrhein) station
・ Friedrichsfelde
・ Friedrichsfelde (Berlin U-Bahn)
・ Friedrichsgabekoog


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Friedrichs extension : ウィキペディア英語版
Friedrichs extension
In functional analysis, the Friedrichs extension is a canonical self-adjoint extension of a non-negative densely defined symmetric operator. It is named after the mathematician Kurt Friedrichs. This extension is particularly useful in situations where an operator may fail to be essentially self-adjoint or whose essential self-adjointness is difficult to show.
An operator ''T'' is non-negative if
: \langle \xi \mid T \xi \rangle \geq 0 \quad \xi \in \operatorname\ T
==Examples==

Example. Multiplication by a non-negative function on an ''L''2 space is a non-negative self-adjoint operator.
Example. Let ''U'' be an open set in R''n''. On ''L''2(''U'') we consider differential operators of the form
: (\phi )(x) = -\sum_ \partial_ \ \phi(x)\} \quad x \in U, \phi \in \operatorname_0^\infty(U),
where the functions ''a''''i j'' are infinitely differentiable real-valued functions on ''U''. We consider ''T'' acting on the dense subspace of infinitely differentiable complex-valued functions of compact support, in symbols
: \operatorname_0^\infty(U) \subseteq L^2(U).
If for each ''x'' ∈ ''U'' the ''n'' × ''n'' matrix
: \begin a_(x) & a_(x) & \cdots & a_(x) \\ a_(x) & a_ (x) & \cdots & a_(x) \\ \vdots & \vdots & \ddots & \vdots \\ a_(x) & a_(x) & \cdots & a_(x) \end
is non-negative semi-definite, then ''T'' is a non-negative operator. This means (a) that the matrix is hermitian and
: \sum_ a_(x) c_i \overline \geq 0
for every choice of complex numbers ''c''1, ..., ''c''n. This is proved using integration by parts.
These operators are elliptic although in general elliptic operators may not be non-negative. They are however bounded from below.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Friedrichs extension」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.